Dozhd
Администратор
- Регистрация
- 18 Янв 2014
- Сообщения
- 136.259
- Реакции
- 387.022
Складчина: Алгоритмы машинного обучения: базовый курс [Тайлер Венс]
Практическое руководство для новичков, которые хотят понять основы машинного обучения. Здесь представлены ключевые алгоритмы, такие как линейная регрессия, деревья решений, методы опорных векторов и нейронные сети, а также объясняется работа с данными и инструменты Python.
Четкие объяснения, примеры кода и практические задачи помогут быстро освоить теорию и начать применять машинное обучение в реальных проектах. Книга идеально подходит для студентов, аналитиков и разработчиков, делающих первые шаги в этой области.
Спойлер: содержание
Глава 1. Что такое машинное обучение?
Глава 2. Применение машинного обучения
Глава 3. Необходимый базис
Глава 4. Супервизорное обучение
Глава 5. Несувервизорное обучение
Глава 6. Полусупервизорное и обучение с подкреплением
Глава 7. Линейные модели
Глава 8. Методы ближайших соседей
Глава 9. Деревья решений и ансамблевые методы
Глава 10. Методы опорных векторов (SVM)
Глава 11. Нейронные сети
Глава 12. Работа с данными
Глава 14. Разработка ML-проекта
Глава 15. Оценка и валидация моделей
Глава 16. Обучение на больших данных
Глава 17. Обработка и анализ текстовых данных
Глава 18. Применение машинного обучения в реальных приложениях
Цена 690 руб.
Формат epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip
СКАЧАТЬ
Практическое руководство для новичков, которые хотят понять основы машинного обучения. Здесь представлены ключевые алгоритмы, такие как линейная регрессия, деревья решений, методы опорных векторов и нейронные сети, а также объясняется работа с данными и инструменты Python.
Четкие объяснения, примеры кода и практические задачи помогут быстро освоить теорию и начать применять машинное обучение в реальных проектах. Книга идеально подходит для студентов, аналитиков и разработчиков, делающих первые шаги в этой области.
Спойлер: содержание
Глава 1. Что такое машинное обучение?
Глава 2. Применение машинного обучения
Глава 3. Необходимый базис
Глава 4. Супервизорное обучение
Глава 5. Несувервизорное обучение
Глава 6. Полусупервизорное и обучение с подкреплением
Глава 7. Линейные модели
Глава 8. Методы ближайших соседей
Глава 9. Деревья решений и ансамблевые методы
Глава 10. Методы опорных векторов (SVM)
Глава 11. Нейронные сети
Глава 12. Работа с данными
Глава 14. Разработка ML-проекта
Глава 15. Оценка и валидация моделей
Глава 16. Обучение на больших данных
Глава 17. Обработка и анализ текстовых данных
Глава 18. Применение машинного обучения в реальных приложениях
Цена 690 руб.
Формат epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip
СКАЧАТЬ
Для просмотра скрытого содержимого вы должны зарегистрироваться
Возможно, Вас ещё заинтересует:
- Формулы + уравнения = химия, которую ты понимаешь [Елена Зыкова]
- Детокс меню. Последняя версия [boltalka_na_pp] [Юна Витковская]
- Молодость в твоих ногах [Zarina Del Mar] [Зарина Манаенкова]
- Цигун «Семь Драконов» [Юрий Лоншаков] + Искусственный «интеллект» от А до Б [Мария Эгос]
- Ваша Свобода от Прокрастинации [Николай Щербатюк]
- [opencart] Безналичный платеж. Счет на оплату PRO для OC3 (PDF)