Dozhd
Администратор
- Регистрация
- 18 Янв 2014
- Сообщения
- 135.532
- Реакции
- 386.993
Складчина: Введение в нейронные сети (Keras, Tensorflow) [stepik] [Юлия Пономарева]
Для кого этот курс:
Для тех, кто хочет разбираться в устройстве нейронных сетей, кто хочет решать задачи компьютерного зрения (computer vision) или обработки естественного языка (natural language processing), кто хочет получить навык написания кода на Keras/Tensorflow
Начальные требования:
Основы Python
Numpy
Основы линейной алгебры (понятия векторов, матриц)
Понятие производной
Основы машинного обучения (работа с данными, линейная регрессия)
Почему стоит выбрать именно этот курс:
В этом курсе 8 лекций с практическими упражнениями, которые покрывают основы нейронных сетей.
Каждой тонкости уделяется особое внимание, информация разжевывается до мелочей и подается вам.
Цели курса:
Разобраться в устройстве нейронной сети
Усвоить процесс создания нейросети на Keras/Tensorflow
Научиться решать задачи классификации, детекции, сегментации
Освоить концепции сверточных и рекуррентных нейронных сетей
Познакомиться с популярными подходами для решений задач
Чему вы научитесь:
Обучать сверхточные нейросети для задач классификации, сегментации и детекции
Применять метод обратного распространения ошибки
Создавать свои нейронные сети на Keras/Tensorflow
Обучать рекуррентные нейросети для работы с текстом
Разбираться в metric learning, autoencoders, GAN
Программа курса:
Введение
Приветствие
Google Colab
Знакомство с устройством нейронных сетей
Основы обучения нейронных сетей
Keras
TensorFlow
Архитектуры нейросетей
CNN - сверточные сети
RNN - рекуррентные сети
Прикладные задачи
Сегментация
Детекция
Генерация изображений и классификация большого кол-ва классов
Цена 3500 руб.
СКАЧАТЬ
Для кого этот курс:
Для тех, кто хочет разбираться в устройстве нейронных сетей, кто хочет решать задачи компьютерного зрения (computer vision) или обработки естественного языка (natural language processing), кто хочет получить навык написания кода на Keras/Tensorflow
Начальные требования:
Основы Python
Numpy
Основы линейной алгебры (понятия векторов, матриц)
Понятие производной
Основы машинного обучения (работа с данными, линейная регрессия)
Почему стоит выбрать именно этот курс:
В этом курсе 8 лекций с практическими упражнениями, которые покрывают основы нейронных сетей.
Каждой тонкости уделяется особое внимание, информация разжевывается до мелочей и подается вам.
Цели курса:
Разобраться в устройстве нейронной сети
Усвоить процесс создания нейросети на Keras/Tensorflow
Научиться решать задачи классификации, детекции, сегментации
Освоить концепции сверточных и рекуррентных нейронных сетей
Познакомиться с популярными подходами для решений задач
Чему вы научитесь:
Обучать сверхточные нейросети для задач классификации, сегментации и детекции
Применять метод обратного распространения ошибки
Создавать свои нейронные сети на Keras/Tensorflow
Обучать рекуррентные нейросети для работы с текстом
Разбираться в metric learning, autoencoders, GAN
Программа курса:
Введение
Приветствие
Google Colab
Знакомство с устройством нейронных сетей
Основы обучения нейронных сетей
Keras
TensorFlow
Архитектуры нейросетей
CNN - сверточные сети
RNN - рекуррентные сети
Прикладные задачи
Сегментация
Детекция
Генерация изображений и классификация большого кол-ва классов
Цена 3500 руб.
СКАЧАТЬ
Для просмотра скрытого содержимого вы должны зарегистрироваться
Возможно, Вас ещё заинтересует:
- TikTok-монетизация [Илья Федоу]
- Как создать вебинар или контент для онлайн-курса из интервью [Олег Замышляев]
- Техника программирования мозга. Отключение стресса за 5 минут [Яна Эдельштейн]
- Древняя магия зеркал [Академия Ведьм] [Евгения Першина]
- Забираем Деньги с Рынка по Системе вместе с AI [Юрий Козак]
- 10 вещей. 100 сочетаний [Лена Червова]